
*038 963 WISCONSIN UNIV MADISOn MATHEMATICS RESEARCH CENTER
P*CKA _!

~~eV DORTARLE

END
DATE

FILMED

•5~ 77

/

S

MRC Technical Summary Repor t ~ 1731

SOFTWARE FOR INTERVAL ARITWIETIC:
A REASONABLY PORTABLE PACKAGE

J . M. Yohe

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison , Wisconsin 53106

Re::iv:d February 25 , 1977)

Approved for public release

: Distribution unlimited
(- .

Sponsored by

—~J U. S. Army Research Of f i ce
LL.~ P. 0. Box 12211

Research Triangle Park
Nor th CarolIna 27709

UN I VE RSITY OF WIS CONSIN - MADISON
MATHEHATICS RE~ EA!~C~’ CENTER

SOFTWARE FOR INTERV .1. ARITHMETIC:
A REASONAB LY POR’fA~LE PACKAGE

J. M. YOHL

Technical Su~~ary Report # 1731
March , 1977

ABSTRACT

We discuss the design and capabilities of a package of FORT RAN

subroutines for performing interval arithmetic calculations. Apart

from a relatively small number of primitives and constants, the

package is directly transferrable to most large scale computers, and

has been successfully implemented on IBM, CDC , and Honeywell equip-

ment in addition to the UNIVAC 1110.

This packag. has been designed so as to be compatible with the

AUGMENT prec oapi ler, and includes interval analogs of appropriate

standard FORTRAN operations and functions, as well as operations and

functions peculiar to interval arithmetic. The result is that the

user who has access to AUGMENT may write programs using interval

arithmetic just as though FORT RAN recognized INTERVAL as a standard

data type.

N.6(MOS) Subject Classification : 94.04

Key Words: Interval Arithmetic Program Package
Portable software

Work Unit No. 1 (Computer Science)

Sponsored by the United St tes Army under Contract Number 1)AAG29-75-C- 002 4
and a grant from the Waterways Experiment Statiom , Vicksburg , t4ississ~op .

\ ~çG ~~~

~~~~~~SOFTWARE FOR INTERVAL ARITHMETIC:
• A REASONABLY PORTABLE PACKAGE

J. M. YOHE

- 1. Introduction: One means of bounding the error in digital computation

is through the use of interval, or range, arithmetic; instead of computing

with approximate real numbers, one calculates with pairs of approximate

real numbers -- the first member of a pair being a lower bound for the

true result, and the second an upper bound. By this method, one can take

into account such varied s~urces of error as uncertainty in input data,

inaccuracies in mathematical formulae, and errors in approximation of real

numbers and the operations on them. The theory of interval arithmetic is

develo xte 1 elsewhere. 5]; we shall not treat it here.

e majcr obstacle to the use of interval arithmetic is the unavaiL-

ability of software. INTERVAL is not a standard data type in any produc-

tion language that we know of; preparation of a package of subprograms to

handle interval data is a nontrivial task.~~,Since the representation of and

operations on interval data are necessarily\~ther heavily dependent upon

the architecture of the host computer , a package developed for one system

can not, in general , he moved intact to a different system.

This paper describes an interval arithmetic package for use with

FORTRAN. The power of the AUGMENT precompiler [2.3] is employed to render

the major part of the package independent of specific data representations,

and the package is so designed that the parts which are representation-

dependent are concentrated in a relatively small number of modules , most

V
Sponsored by the United Stat~ s Aray under Contract Number DAAG29-75-C-0024
and a grant from the Waterway s Experiment Station, Vick~burg, Mississippi.



of which are easily adapted to new environments.

Although this package was written for the UNIVAC 1110, it has also

been implemented on IBM, DEC, Honeywell, and CDC equipment. No major

problems have been reported in transporting the package to these host

systems.

The information given in this paper is not intended to be exhaustive.

The interested reader will find detailed information on all aspects of

the package in the technical manual [9].

—2—



2. Design of the package:

The viewpoint taken was that of the end user. We sought to make

the package coznr~1ete, accurate, convenient to use, fail—safe, and

transp ortable.

Completeness: All appropriate ANSI Standard Fortran [1] operations

and functions were implemented, along with some (such as tangent, hyper-

bolic sine, and hyperbolic cosine) which are not ANSI Standard but are

normally implemented in the FORTRAN language anyhow. Since interval

numbers can be regarded in a natural sense as belonging to an extension of

the real number system, most arithmetic operations and special functions

are meaningful. In addition, there are a large number of functions peculiar

to interval arithmetic (such as union and intersection of intervals, mid-

point, and half-length) which were also included in the package. Finally,

input/output routines and conversions between intervals and standard data

types (where appropriate) were implemented. A list of the functions and

operations is given in Table 2.1.

Accuracy: It is well known that error is inherent in digital computa-

tions, and that most computer architectures are less than optimal from this

point of view. (Recently, there has been increased interest in developing

more hospitable architecture; see, for example, Lang and Shriver [ 4 1

and Ris (6].) Moreover, it is extremely difficult, if not impossible, to

obtain the information required for rigorous bounding of hardware operations.

Since interval arithmetic tends to be pessimistic anyhow, we felt that the

calculation of bounds through straightforward application of a priori

estimates such as Wilkinson ’s [7] would lead to intolerable inaccuracy.

In addition, vital information concerning such phenomena as exponent range

—3—



faults is generally not available in existing systems. Consequently, the

package was designed to be based on a set of arithmetic primitives of the

type described in (8].

The special functions pose a different problem. A straightforward

application of interval arithmetic to the algorithms used to compute these

functions will yéeld unacceptably wide~intervals, due to the dependency

problem 15 1. We addressed this problem by employing higher precision

functions, bounding the results on the basis of accuracy information pro-

vided by the software supplier. This must be regarded as being less than

completely satisfactory, since available error information is often sketchy

and may not be completely rigorous; however, the bounding procedure takes

these disadvantages into account, and the results can be regarded as being

valid with extremely high probability.

Like the arithmetic routines, input/output routines need to be written

from the ground up. Conversion routines supplied with standard FORTRAN

systems have no provisions fer obtaining the required bounds; moreover,

most of them are of unknown, if not dubious, accuracy.

Convenience: By itself, no collection of routines to perform non-

standard arithmetic is really convenient to use. Each operation must be

performed by a call on one of the subprograms in the package; this means

that the user must parse every expression himself and write his program in

what amounts to assembly language. The best that can be done in this

setting is to minimize the inconvenience. To this end, we have kept the

package as internally consistent as possible. All entry points to the

package bear the prefix INT; routines used by the package itself are pre-

fixed with INT or BPA, according to their level. Thus, by avoiding variable

and subprogram names beginning with these prefixes, the user may be assured

of avoiding conflicts.

—4—



Calling sequences for the routines in the package are consistent and

concise. No information is transmitted which is not absolutely essential

to the function being performed. Where the result of a function or operation

is a standard data type, the routine is implemented as a function of that

type ; otherwise, the routine is implemented as a subroutine. In the former

case, the arguments are simp ly the operands; in the latter case, the arguments

are the operands together with the result. (In the interest of flexibility,

the endpoints of an interval are regarded as being a nonstandard data type.)

Convenience of use of any nonstandard data type is increased dramatically

by the use of an appropriate precoinpiler. This package is specifically de-

igned to be used with the AUGMENT precompiler, which allows the source

FORTRAN code to be written as though FORTRAN recognized INTERVAL as a stan-

dard data type. In this case• Just as above, the user must avoid conflicts

with the package; although the source code will not contain references to

the routines of the package, the output from AUGMENT, of course, will. In

addition, the user must also avoid the function names and operators shown

ih the table, since these become reserved words in the extension of FORTRAN.

ln most cases, this should not be an onerous task.

Fail-safe: Errors can occur in many of the operations of the interval

package, just as they can in REAL. operations. It is our viewpoint that errors

should not be ignored. Each subprogram in which an error can occur will

call the error-handling routine, INTRAP, prior to returning control to the

calling program. If no error has occurred, INTRAP simply returns control

to the routine which called it. Otherwise, INTRAP takes the action specified

by a table which resides in a CO*IDN block; the response depends on the

error which has occurred, but usually includes a print-out which gives the

user complete information on the error. The user may, if he chooses, alter

—5 —



the response by changing the table.

Transportability: Transportability and flexibility of representation

are closely linked. The package is based on three data types: BPA (mnemonic

for Best Possible Answer), which is the data type of the endpoints of inter-

vals , but is otherwise undefined except in a few primitive routines; INTERVAL ,

which is defined to be a BPA array of length 2; and EXTENDED, which is the

data type in which evaluations of special functions are performed. In the

UNIVAC version of the package, the representation of BPA is the same as

that of REAL, and EXTENDED is a synonym for DOUBLE PRECISION.

The AUGMENT precospiler is used to extend the representations of these

nonstandard data types throughout the package. The output of the AUGMENT

precompiler is a set of routines which, apart from the arithmetic primitives

which are written in assembly language, conforms as closely as possible to

ANSI Standard FORTRAN.

There are less than twenty program modules which depend on the

representations of BPA and EXTENDED numbers; many of these will need no

alteration for most applications. Adaptation of the package to other

hardware is discussed more fully in Section 4.

—6—



3. of the INTERVAL package:

If used as a collection of subroutines, without the benefit of the

AUGMENT precoapiler , the INTERVAL package is, of course, used just as

any package of subprograms would be used. That is the user must decide

which routines must be invoked and in what order. We prefer to regard the

INTERVAL package as an extension of the capabilities of the host computer

system, and the AUGMENT precompiler as an instrument for extending FORTRAN

to take advantage of the additional power. Thus we will address the

question of use of the package in this context; the user who by reason of

preference or necessity does not use the precompiler will have no difficulty

in adapting this discussion to his needs.

Type declarations for INTERVAL variables: If X, Y, and Z represent

INTERVAL variables, they must be declared as such by the statement

INTERVAL X , Y, Z

INTERVAL variables may be dimensioned; the only restriction is that if the

FORTRAN compiler limits the number of dimensions of an array, that limit

must be decreased by 1 for INTERVAL variables. The reason for this is

that AUGMENT will declare INTERVAL variables as arrays.

Assignment of values to INTERVAL variables: Host real numbers can not

be represented exactly in the computer. The error inherent in a statement

such as

X — .1

may not be imeediately obvious. If X is an INTERVAL variable, the above

statement will assign a value to X, but that value will not, in general,

be an interval containing the real number .1. In order to set X to an

interval which does contain .1, one may write

X • ‘(.1, .l)$’,, or X — 9H(.1, .l)S if the host compiler

—7—



does not accept quoted Hollerith literals. If the host compiler generates

a sentinel for a Ilollerith literal, and if the UNPACK primitive recognizes

that sentinel, the terminal $ may be omitted. Any string that is legal input

for the formatted read (Se. discussion below and Appendix 1) is also accept-

able to the routine which performs this conversion . Thus, on the UN IVAC

1110, the statement

X — • .1.

would also have the desired effect.

Reading INTERVAL variables: Two options are available in this package :

a free format read and a formatted read .

Th. free format read will obtain the next data field from the input

stream on the specified unit, convert it and store the result in the

specified INTERVAL variable. The calling sequence is

CALL INTRDP(UNIT, X)

The basic package will recognize units S (standard input) and 0 (reread),

but the user may add other units or change unit designations as dasired;

this is discussed in the technical documentation. A data field may be

any legal representation of an interval variable (see Appendix 1); however ,

for simplicity, one may be assured that the format (number, number), where

numb.r is any legal FORTRAN string representing an integer , fi xed point

number, or floating point number , is always valid. Embedded blanks between

matching parentheses are always ignored. Fields may be separated by

blanks (as many as desired), although if intervals are enclosed in parenthe-

ses as indicated above, blanks are unnecessary. Fields may be continued

across card boundaries. The input stream remains uninterrupted so long as

all reading is done by INT RDF and the unit number does not change. Once the

input stream has been interrupted , INTRDF begins a new input stream with

a new record .

—8—



The formatted read , as its name implies , reads interval data ac~ordir ~,

to a specified format. This routine reads a vector of values (which may

be of length 1). The calling sequence is

CALL INT RD(UNIT , TNT, A, N)

Unit is as in the free fo rmat read; A is the first location of the vector

into which the data is to be read; and N is the length of the vector.

FM’r is an array of length 3; FMT(l) is the number of data items per record,

F)~ff (2)  is the number of characters to be ignored before each data field, and

F~ff(3) is the width of each data field. Note that these values are con-

stant for each call to INTRD. A data field may be any legal representation

of an interval variable; parentheses are optional, and embedded blanks are

permitted. No other information is permitted within a data field.

Computing with INTERVAL variables: Expressions involving INTERVAL

variables are written in standard FORTRAN syntax, just as though INTERVAL

were a standard FORT RAN data type. A list of the operations and functions

available in this package may be found in Appendix 2.

Mixed mode expressions are permitted, but their use is discouraged due

to the high probability of introducing hidden error. For example, the expres-

si on

I — 0.]. *

where X and Y are INTERVAL variables, will not yield a correct value of Y;

0.1 will first be converted to REAL by the compiler, and AUGMENT will then

cause that REAL number to be converted to a degenerate interval not contain-

ing .1. 1’t*ltiplication will then occur using this erroneous interval.

Other operators and functions peculiar to interval arithmetic are

implemented; examples include the intersection of two intervals, the union

of two intervals, derivation of the midpoint and half-length, etc. These

are listed in Appendix 2. Relational operators are also implemented, but

—9—



they take on different meanings in the context of interval arithmetic;

see Appendix 2 for details.

Writing INTERVAL variables: The write routine will convert a vector

(possibly of length 1) of INTERVAL variables to external fo rmat and wri te

it on the specified output unit according to the given format. The

external representation of each interval is guaranteed to contain the

interval, and is the smallest interval representable in the given format

which does so. The calling sequence is

CALL INTWR (UNI T , TNT , A , N)

The basic package will recognize units 6(standard printer) and 1 (standard

punch) , but again the user may change designations and/or add units at will.

If an illegal output unit is specified , INTWR will use the standard printer

instead .

FMT is now an integer array of length 4. Th. first three valu es are

the same as for INTRD (except that ignored characters in the output record

are filled with blanks)~ FMT (4 ) is a carriage control character for use

where appropriate. This character must be either O or ‘ ‘, denoting

double spacing or single spacing, respectively. The width of each data

f i e l d  sp .cA f le d  bq th, forma t must be at least great enough to permi t the

p ackag. to convert one signi f icant dig it i in the 1110 version , this is 15

characters , assuming a 2-digit exponent. Add 2 characters for each addition-

al exponent digit in the external format. If an illegal format is speci-

fied, the routine will default to a standard format.

A and N are as in the formatted read.

Errors: The package is designed to detect all errors as they occur.

The user may elect any of the available responses for any possible error

(See Appendix 3); however, the default response is to print an error message

and halt the computation except in those cases where viable alternatives

—10—



exist. Those cases are few indeed; they comprise arithmetic underf lows

(where the offending value is set either to zero or to the properly-

signed number of smallest magnitude , as appropriate) and errors occurring

on output (where the write routine uses standard modes of output rather

than electing to scrub the computation sad lose the output altogether) .

In the former case, the computation proceeds without notice to the user;

in the latter case, a message is printed after the output is complete.

The method of changing the default responses to errors is discussed in the

tjchnical documentation.
/

Producing an object program : Unless a sophisticated job control

language allows for an automatic (from the user’s point of view) invocation

of the AUGMENT precompiler and the FORT RAN compiler, the generation of

an object program is a two-step procedure:

1. Use AUGMENT to translate the source program into a FORTRAN program

compatible with the compiler. This can be accomplished with a run stream

of the following type:

invoke AUGMENT

description decks for BPA and INTERVAL (supplied with the package)

*BEGIN

source program

*END

AUGMENT will write the translated program on Unit 20.

2. Compile the output of AUGMENT using the standard FORTRAN compiler

and execute the resulting program in the usual manner. The user must insure

that the BLOCK DATA modules are included when the program is processed

by the linkage editor.

—11—



4. Adaptation of the packa&e:

Adaptation of the package to other hardware is not difficult provided one

has access to the AIJQ€NT precompiler. The necessary steps are :

1. Decide on data representations for th. interval endpoints and

for EXTEN DED precision numbers.

2. Code or revis, primitives , as necessary.

3. Process the package through the AUGMENT precompiler and compile

the resulting FORTRAN code.

4. Check the package .

S. Tun. and recheck the package.

We discuss each of these steps in greater detail.

Data representations: Normally, the representation for interval endpoin ts

will be the same as REAL and EXTENDED will be the same as double precision.

These choices will simplify the adaptation of the package; however, for special

purposes such as higher precision interval arithmetic, other choices may be

made. There are several implicit assumptions which will , to a certain exten t,

govern the choices of r.presentations~

a. The portion of the package which performs endpoint evaluations

(known as type BPA) will contain explicit routines to perform all

operations. As d.signed , it is assumed that conversion from EPA to REAL

is exact, although conversion in the other direction need not be. This

is done to faci litate adaptation to two’s complement hardware, where the

negative of a zeal number is not necessarily representable; we assume that

the negative of every EPA number is representable.

b. It is assumed that EXTENDED is bound to a higher precision than

is IPA. Moreover, we assume that every IPA number and every FORTRAN

integer can hi represented exactly in EXTENDED format. For the evaluation

of special functions , we assume that a complete supporting package exists

—12—



for type EXTENDED, and that bounds on the accuracy of these routines

are available.

Primitives: There are nineteen primitives which depend on tt~e represen-

tation of EPA and EXTENDED numbers in the host system. Two of these are

BLOCK DATA modules, which contain various representation dependent constants;

eight are written in FORTRAN and depend only on EPA format being the same

as REAL and EXTENDED being the same as DOUBLE PRECISION; three depend on both

data representations and the (nonstandard) FLD function; one contains FORMAT

statements which may be representation dependent; and five are arithmetic

primitives which must necessarily be recoded for any change in data representa&

tion. The arithmetic primitives are, in fact, written in assembly language.

In addition, INTRD and INT RDF, while not technically primitives, contain

nonstandard READ statements which recognize the END OF FILE condition. If the

host compiler does not recognize this form of READ statement, those statements

will need to be modified.

Complete documentation of these primitives is given in the technical

manual. It does not seem appropriate to go into greater detail here.

AUGMENT processing: The use of the AUGMENT precompiler preserves both

naturality of expression and flexibility. Most of the INTERVAL package is

written in terms of the nonstandard types BPA, EXTENDED , and INTERVAL. The

binding to specific data representations is accomplished through the primitives,

and these bindings are extended through the remainder of the package by the

use of AUGMENT. Every effort has been made to write the package so that the

output of the AUGMENT precoapiler will be N~SI Standard FORTRAN. There is

no requirement that AUGMENT be available on the target computer; the pre-

processing can just as well be done on any computer, with the resulting

—1 3—



FORTRAN code being brought to the target system for comp ilation .

Checking the package: A collection of test programs is provided with

the INTERVAL package. Successfu l execution of these programs is reasonably

good assurance that the primitives have been impl emented properly.

Tuning the package: The price paid for the degree of flexibility

present in the source code for this package is quite likely to be decreased

efficiency in the object code. For example, since the format of EPA

numbers is arbitrary, conversion from REAL to EPA will generate a call on a

subprogram which is responsible for performing this task (this subprogram

is, of course, a primitive). If EPA numbers are the same as REAL. this will

result in unnecessary overhead; an in-line replacement operation would

perform the same task at considerably less pst. AUGMENT can not be

instructed to make this modification; thus, for greatest efficiency,

it will be necessary to examine the output of AUGMENT and replace calls

of this type by in-line replacement statements. There are, of course,

many other possibilities, depending on representation; for example, if the

hardware has double precision capability, one could change calls on the

interval replacemen t subroutine to in-line replacement statements using the

double precision hardware.

A certain amount of care must be exercised in tuning the package.

For examp le , the routines which evaluate EPA relational operators call on

the EPA subtract routine . This should not be altered unless the hardware

subtrac t always produces a result of the same sign as the true result , even

in cases of underfiow and overflow. If the hardware sets an undsrf low to

zero, or gives garbage when overflow occurs, then the hardware subtract must

not be used.

Needless to say, the packag. must be rechecked whenever any changes are

made.

—14—



5. Conclusion:

In this paper, we have sketched the design and use of a pack age for

performing ci culations in interval arit hmetic. The package is both

• flexible and transportable; adaptation of the package to other systems

can be accomplished by rewriting a maximum of nénetee n primitive modules ,

most of which are easily adapte d to a new host system. Further details of

the package are provided in the technical documentation.

— 15—



~~FERENCES

1. ANSI Standard FORTRAN, American National Standarda Institut e ,

New York, 1966.

2. Crary P. D. The AUGMENT preocepiler’ I. User information . The

University of Wisconsin - Madison , Mathematics Research Center ,

Technical Sumeary Report * 1469, December, 1974.

3. 
____________• The AUGMENT pre ccm~pi1er II. Technical doc~assn-

tati on. The University of Wisconsin - Madison , Mathematics

Research Center , Technical Si~~~~ary Report 5 1470 ,

4. Lang, Allan L. and Shriv.r, Bruce D. The design of a polymorphic

arithmetic unit. Third IStS - 2’CCA S~aeoaium o~ Comp uter

Ar.itJa.t,ic, Nov~~~er, 1975 , 48 — 55.

5. Moore , Ranon I. Int rval Analysis. Prentice - Hall, Inc.,

~~g1evood Cliffs , N. 7., 1966

6. Ris , Frederic N. A unified decimal floating—point architecture

fox th support of high—leve l languages (extended abstract ) .

SIGNUN N wsl.tt.r 1.1, 3 (October , 1976) , 18 — 22.

7. Wilkipson , J. H. Rounding errors in algebraic process.s. Notes

on App lied Sci•nc. No. 32, Her Majesty ’s Stationery Office,

London , 1963.

8. Tube, J. N. Rounding. in floating-point arithmetic. 1555 Trans.

Ccuputers C—22 (1973) , 577 — 586.

9. 
_________• The INTERVAL Arithmetic packaqe. The

~~iv.rsit y of Wisconsin - Madison, Mathematics Research Center ,

Teubaiaal B’ .ry Report (forthcoming).

— 16—



APPENDIX 1

STANDARD FONTRAN NUMBER AND
INTERVAL NUMBER J~ PRESENTATIONS

DI’ 1T i s —  O $ l 12 13 14 15 16 17 18 19

SI~~i ia +1—
INTEGER s s  NULLICSIGN> ((INTEGER? CDIGIT>

RADIX 1 .

PIXEDI’OINT $ s (INTEGER) < RADIX> CFIXEDPOINT> CDIGXT >

EXPSEP s E I D

EXPONENT $ s• CSIGN>~~CEXPSEP> l (EXPSEP)(SIGII> I <EXPONENT)CDIGIT>

NUMBER $ i <INTEGER? (FIXEDPOINT> (INTEGER? <EXPONENT’ I
(FI~~ DPOINT> (EXPONENT>

ENDPTSEP is. s
0

COMMA ss  ,

INTERVAL ss  (NUMBER’ (NUNBER’) <NUMBER ’(ENDPTSEP>CNUMBER? I
( CNUMBER~ (EWDPTSEP> <NUMBER)) (<NUMBE R? <COMMA> <NUMBER> )

—17—



INTERVAL INP UT RULES

FORMATTED INPUT,

One and only one <INTE RVAL> shall app.ar in any one field.

Embedded blanks are permitted: th.y will be ignored.

FREE FORMAT INPUT,

Leading blanks are always ignored.

Blanks within matching pairs of parentheses are always ignored.

Co aa within matching pai rs of parentheses are regarded as endpoint
separators .

A field consists of exactly one çINTERVAL>.

A field is ter minated by

1. A visible blank 5

2. Any of the characters $‘ , ‘0’ , ‘— ‘g

3. A ccema occurring outside of a matching pair of par.nth.sesg

4. Any nonblank charac t.r following a matchin g righ t paren-
thesis (If such character is not ‘$‘, ‘0’, ‘•‘, or ‘,‘,
it will b. regarded as the first character of the next
fi.ldl ,

5. A left parenthesis or colon occurring outside of a matching
pair of par .nthe ses. ( Such character will be regarded as
the fi rst character of the next fi.ld~.

If a 1sf t parenthesis is encoun tered, the scan proce eds to the matching
right par.nth ..i. regardless of wha t characters are encountered,
except that ‘$‘, ‘0’ , and ‘— ‘ always terminate the fisid.

ALL INPUT,

A null field is taken to represent th . inte rval (0 , 0) .

A field containi ng (NUMBER) or (<NUMBER)) is taken to represent a
degenerate inter val s this number is converted and rounded down
for the left endpoint and up for the right endp oint.

If a field contains two (NUMBBR? s, the first will be convsrtsd and
rounded down for the left endpoint , and the second will be con-
verted and rounded up for th . right endpoint.

—18—



0

,fl u~~U~~Ui U~~~~~~~~ Ui .VI U) Ifl ~~~U~~~~~~~ U~~J~~I ~~~s~~8~~0 8 O U ~~u~ ~
—

0 0 0 0
.4 ..4 --I .4
Ø 4 J 0~~lU I. U
5 4 0 4 ——2 ~~~~~~X X X X  X X X ) (  ‘.4 )4 .4 * )4~~~
~~~v- .  i,

2 2 2 2 2 2 2 2 2 2 2 2 2~~~2 2~~ 2 ’~ ~~~~~~~X X X) C X X X X X x X * X X * X X X X Z * ~~~

~~~~~~~~~~ <
.

‘~
,

0 ~ ~
~- .,z:;;~~~ ~~~~~~~~~t ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ Z Z~~~~ D ~~~~~~~~~~~4 u X Q  X X X X ~~~~~~~~~~ U~~~~~~~~ —~I. i1I~~ I4 $ ‘ . I~~ E ’I~ ~~~~~~~~~~~~~~~~~~~~~~~~~ E’ ~~~E ’~~~~~ - ’— ~~- c-’ ~~~~-.~~~-‘ ~~~~~~~~~~~~~~~H M  Z Z Z Z  Z Z Z Z  Z Z Z Z Z Z Z Z Z  Z Z Z ~~~~~~~~~ Z Z Z Z ~~~ Z Z Z

E4~~~ 4’4 44 H S - 4 H 4~~~’4 ~~~~~~~~~~4~~~ 4 H H 8-4 .-4 H 8- ~~~~~‘.~~~~~~~~I

d i..
zH 14 4

~~~~~~~~~~
4 4 .

~ k ~. ~~~~~~~~~~

~
~~~~~ c:1 ’~~~~ ~ ~
~~~~~~~~ k k  I’., ~~

X X) C X X X X X X X) 4 X X X X X X X X M X ~~~~X 0 ~

-~~~41 —
X 0
H ‘.4aI.) •0 0 0
0. 0

14 14 0 0 1
. 1 4

.4 0 4 . 4 4 X 4 4 O X

• 14qI
‘4 — 4 ‘-4

5 0~ X 4 > ~< 4J ’— ’C
> S >
4 41.4 14 0 4 4 0 ‘-4 4~~~~ 0 0.

~ • .0 5 0 4 0 IJ > X 48 ‘-4 4
>4 . 4 0~~~~~a~~~

)4 4 4’ ‘ . 4 > 4 1 0 14 0 ‘5 > 0— 0 ~~~
‘4 .-i S 0.Z~~~~X 4 .-4 X 0 ‘ 4 0 .4 5 ’ -’ -‘4 > 14 0~~~Z S 4 ~~~ ~~~~~~~~~~ . 4 X 0 ’ 5 .4 4 1 4 4 14 0 0 “ ‘ 4 ’ z~‘5 X > . - 4 41 ~ 1 0 >) C ’41 0 41 0o

H •0 ~~~~ 5 0 . kz z >~~-. 1 i4~~~~ .4 ‘ . 4 0 ’ 4 0 . 4 1 4 0 ~ 0 41 .-. .~~~~

~ -4 . 4 5 4 8 5~~4 ’ . 4 ’.4 1 4 4” . S > 0 ~~ ‘ . 4 0 4 5 .’4 0 -‘4 ~~~~“ 0
4 4I~~~ •~~~ 41 14 .4 O X % 4 4 J 4 4 1 ‘.4 L X~~~S 1 I
> O ~~~~ .4 0 0 0 0 4 J 1 1 4 0 4 J 4 0 . S a I — 0 0 > 0 ‘44 0~~~~—

48 4.1 41 41 0 e) 4 . 4 4~~ > 0 ‘5 .0 -4 - . 4 1 4 0 ‘~. 0 I~~’4~~—
• ~ .4 4 0 W - . 4 >4 8 41 0~~i 4 J ~~~~ 0 ‘ 4 4 0 < —

.4 .4 .4 .4 0 ‘44 ‘44 .4 0 0 I 14 ‘5 0 “-4 4) 0 4 ~~ ~<
~ ‘4~~~~ 1J 4 4 4 4 ‘- - ‘44 . i0 0 4 1 0 0 0 ’ 4 ‘ 5 1 4 - 4 0 0 4 41 0
g~) ..4 Q 4l > > > > 4 0 ~~~~~~~ 4l~~~~~~~ . o v~~~ -.4~~~ ~ .4 ~‘S. 44 8 4 1 4 1 4 1 4)C ‘4.4 4~~4 J 0 - . 4 0 - 4 IJ 48 ‘.4 0 > 4 . -— O e ’ 4 4 0 0 ,0 0 8 8 0 0 0 U ‘.4~~~~ 5 s 0 0 0 ’ u U C 0. ‘ 4 X - 1~~~
~j > 0 0 4 8 4 , 1 4 8 4 4 4 0 8 8 0 4’ .4 --i ‘.~~.0 ~~ -.4 -.4 Q 0 4 ~ ‘0 41~~~ I
p4 4I~~~ 4.1 0 0 0 0 . 4 Q 0 ’ O ’ 0 3 - 4 4 1 4 4 1 8J —4 44 -4 ‘0 0
F. •I~~ 0 -.4 .4 .4 -4 * 4 0 0 00 0 ‘ 5 4 1 ‘41 0 4 1 0 0 0 0 0 < — .
‘.4 ‘44 8 4 0 0 ~~~‘ 5 k C l 0 4 4 l 0 3 0 0 . 0 8l 0 ..~ 4’Z 0 4 1~~~~’.4 4 8 0 0 5 j 4 4) U O I I X .-4 0 41 41 44 84 4) 14 44
‘.4 ‘44 ’0 41 4 4 4 4 1 — 5 . 4 4’ .4 4) 5 4 1 4 0’ C 4.1 8
4. ~~ ‘44 O Q ‘.4 -.4 ’.4 .4) 4 U U U U .~~~’5 0.+- ’4 0’ ‘ 0 0 . 0 0 0 . ‘~~ 0’0) . 0 0 Q . 4), t)’ 4 >. ,~ ~
~~ ~~~~~~~~~ ~~~~~~~~~~~~~~ U U 0 4 8 V) ..4 ~4 u) :: U~~t-. 0:

F.
4’ U

• 5 0
O .0 0 48
‘.4 4.1 .0 0 0’4 .4 4’ 0 0
0 84 ‘.4 -.4 4 8-4

8 ‘4 ~~

‘

U 5 ‘4 4 4’ 4
4 48 .-4 ‘5 4) ~~ 0
> 0 ~4 0 U S C~ U 0 U 0 4.1

14 Q k) > .1 0 ~~~00 -.4 •.4 ‘-4 0 -.4 0 -.4 0
—4 ~4 ’ 4 -4 0 4) 04 1 > . (‘4 z

~z 4 ’~~6~~g 0 0 4 . .4 0 4 . 1 0 g 0 Z 4 8 U 4)
4 0 . 0 4 8 0 . 0 E H~~~~~~~C- 1~~~~:H

8 4 . 4~~~~I ’ . 0 . XZ Z I . -4~~) S 4 ’ 4 1 0 1 i 0~~~ 44 0 8 4 8 4 0 1 . 0 0 0 4
-.4 4 ~~ ~ . 1’ ’44 t’• H

~~
4 4 1 . $

~~~~
S W H H

~~~~
O

0 ~~~~~~~~~~~~~ 4) ‘44 O.~ ~~~~~~~~~~~~~~~S - . 4) . U 0> .O C 0
~~ ~~~~~~~~~~~ U U Z U M Z U U) O l f l F . X 14 (‘1 ~~~U C) Z

14 0.
M 4.

—19—

1.4 0. 3 1 U) U) u) U) U)~~ 1 4 44 4 ’) U) 8) 0 4 4 8 1 4 0 U) u) ..4 .~~~~~4 4 4 4 4 4 . 4

2 2 2 1 2 6
S 44 44 44 44 “4

22 6
X X 44

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~44

(ii’. ( 0 Z 0~~O X 1 4  X < X  F.~~.1
Z X Z X X 4 4 X~~~~~~~~~~Z .-. 0 ~~~~ 0 4 ~
~~~~~~~ ~ ~~~~~~~~ O U Q U U L )  & ) Z  9~~~~~~~ 1 t ~~~i~~~~J4

F . F . F . F .F . r ’ F.)-. F . F . t - . F . k~~ ’)-. 8-. F. E.
1 4 44 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z~~~~Z Z Z ~~~I. 0 ~‘4~~~ 1 4 1 4 1.4 14 1.4 P 4 1 4 P.4 1 4 1 4 1 4 P-4 P4 1 4 1 4 1 4 #4 ‘ . 4 . 4 14 ‘.4 p.4 . 4 1 4 1 4 P4 . 4 . 4 ‘4 ‘4 ‘.4 ~ 4

L.zz
~ .4

—
~~~ ~~

‘ F.
0 84
44 4) 4 4  ~~~~~~~~~~ ~~~~2..

~ ~~~—. 4’4 48 O W  ‘4‘.4 4
!.. ~~~~~~~~~~~~~~~~~~ 14~~~

~~~~ ~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(J Cj 4j (J U  4 4 4

II

Z 0~~~~O O S X  ‘ 4 5 4 4  X � X X X X ) 4 0 W 5 1 4 0  X X  ~~~‘.~~# 1

0’ —

‘U ‘.4 ‘4 -.-4 0 0

.0 .0 6
4) ‘0 0  .4 4J 41 44
48 0 44 0 ‘0 ‘0 0.
• 14 ‘.4 ..4 8) 0.
44
4 0 4 .-. ‘~~ ‘~~41 01
• P.4 4 4 4  N Q  4 I
0 0 44 ‘~

,,,Q .4 .0 ‘0
— ‘0 4 48

0 8) -. 0 4 ’0  ‘4 84
.0 0 0 .  — 4 8 ’  - 4 0  4’ -4

‘g ~~~U) 
~~~~~ 

S 5
-4 0.

~ ~~~~ .-‘~~ • S 0 -4 8) 0.
0 0 . 4 41 ’.4 0 .0 4’ P.4 0 4)) 8)
14 0 .4 0 8) 4 b 0 01

8) 0 0.4 (8) 0 H 0 ‘5

~~ N ‘ 4 0 . 84 N V 0 4 4 ‘-4 0 4) 84 0
.4 - 0 5 N I ~~~0 . 4 .4 4’ ‘0’0 14 14

‘S, U ~~~~~.. ~~ 41 t ~~~~~~4 ‘0~~~~ •
4)

4’ 0 0 0 ’ 4

~~~~~~ ~~~~ 5.4 8 4 - 4  5 4  4 8 . 4  *4

~ 
. 4 0 4 4 4 8 4 4 4 1 0 . 4 8 0

S —‘ I ’ - ’ 8) ’ 0 U - .~~ -. - 4 0 4 0 04 ’ > 0 . * 0 0 4  0. g.• 4 4 1 4 4 ’ H - 40 1 4 O 4 ) 3 0 ’-4~~~ 0 0. ‘44 0, 0. Pe4 ’44 ’440 5 0  0 8) 0 0  0(4 0 — ’ 4 4 - . I 0 ’ Q 4 8 . 4~~ .-. 4J 5 Ii . 4 1 44) 
4 8 4  4))0 - 4 0 4 ) 0 0  48 0 0 0 0.. C_ 0- .I .,’054J .4

~~ .-4 4J 48 4J 0 0 0 ~~~~ 4 ’ 4 8 4 ’ U  0 0  0
4) + 8) 8 4 . 4  0 0 0 4) 14 4) 0 A V l-4 • A l A  V IV ‘4.

P4 ~~ ..- .. --i- . o ~~~~ o g  . 4 4 1  ~~ ‘0 M ’ 0 ’ 0  -4 .”4 .’4 0 - 4  4
I. 0 N 4 ’ 5 I 4 M M~~ 1 4 . 4 0 U  4) 5 0 4 4 0 0 4 4 84 4  4 ) 0  - . 0 — 4)  
14 U .~~ X .~ IX — - . 4 1 4 0  ‘0’0 0 ’0 .44 V~~~~ > > > 4 ’ >  0 4 4 4
Z ~~~- ( I-- - 4 . 4  .‘i 4 ) 0 4 8 0 0 0 ’  8 4 8 4 4 4 4 4 4 4  4 ) .  44
‘.4 U1 ’. 0.’- ID ’ 4 8 0 I . 4 0 4 8 - 4  .~~~48 0 4 0 . 4 0 0 5 4 8 5  .-4 44 ~~~W~~~~ 0
4, 

~~~~~~~~~~~~~~~ 
~~~4 0 4 8 4 4 8 0 . 4 8 0 4 1 4 8 4 8 4 1 4 1  0 .4  ‘44 ‘44

O 4 X 0 . X~~~~ C~~~~ 0 0 0 0 0  ~~~0
~~~U) H 4 4 8 0 1 +  4’) 0 . W S W  ‘.4 1 4 1 4 1 4 1 4 1 4

~
-4
S

‘.4 8)
F.

.4 $ I 8) 4
-4 0 4 - 4

4’ 1 . 8 1 0’ 8)
“4 4. 0 4) 0 ~~‘48 ~~~~~~0 • ’ P 4 - 4 4 8 4 ’ S 0

0 0 4 1 0 0 4 4 0 4 *
Z 4’ 4~~0 8) 0 4 8 4 8 4 4 ’

~ 14 41.4 48
. 4 0 . 4 4 8 44 4 1 4 X X X X W 4) 4 ~~~~14 X •~~~~6~~~~~~~. 4 4 8 0 ’ ’ 4 4 4 W 4 8 0

• 48 0’ 0’ -4 .-4 0

P.4 4I lI4~~~~1.4 8) 5 5 0 5 0 5
8 4 4

~~~

4 I  ( I S I S3~ ~~~~~~~~~~~~~~~~~~~~~~~ ~p4~~~~-.4 .4 .4 ~~ .4 - 4 g 
~~~f r a S f 4~~~~1 4 s X X X X X~~~~44 Z 1 4 m W  0 1 0 1 0 1 0 1 0 ) 0 1 4 4tO 44

—20—

(4 0.
.4 -4 .1.1 ..) 0) 14 14 0) 4 4 0)

9 1 6(4 ‘4

-
0 84

~f • 4 X r • . - — .4
P’4 5 S

4)- - S N N

48 14 44
0. 4 8 0 ’t 01~~~~W F . W F . (4 0. 0 4 4
4’. 4) 0
4) 4.1 .4

F. I-. I-. F. I-. F..
H H Z Z Z Z Z Z Z ‘0
(‘i 0 ~~. ‘.4 P-i ‘4 4.4 P.4 P4 44 P4 p-4 P4 ‘4 P’i 48 81

0z 4) ‘ 8) 0
44 0 ‘4 0

P-I 4) 0 — 4
0) -.4 0 4

8) 8 8 . 4
U 48 4 4 0

-.4 41
88 0.

4 4 0 . 0 . 0 4 8
.0 F.

0
PP.1 P44

4
l•~ u s i s i

0 0
-I ’S

I. 48 . 0 4 8
~ 14 4 0 0 4

0. I -.4 -.4 8)
1.1..I .1 X X I 4 4 5 s 0 o ii

0 U 4 0
> 0

‘41 0 4’ .
. 0 4

48 4) 4 8
0(4 N ‘ 4 4 4 8

4.
0 .-) .1 0 0 1 4
4-I .4 4) 41

48
0 4 0 0 CI 4J

(8) ‘Si’ S ~
48 0. 4)

.4 55 4 4 4) .4 .
~5 0 ‘5I 4) 48 4)

4) 4 4 0 48 0 1* 4 1 4 4
— 0, ~

(4 5 0 ‘44 .-4 (4 0.
0 ‘44 4 .-. 4)

5 48
‘4 ~~~~~~- .!~‘ ~~ .- I ‘-4 5

I ‘4 4 J _o 4’ * 4 M 1* -.4 4) 44 4 4 , 1
#4 U 4i ’44 Q 48 54 48 S O . 4) 0 0
F. I 4) 0 4’ 4) .0 -.4 4)
4 4 41 ..4 () . 45 .4 ‘ 4 ~~j H 4~ ‘8) 4 8

84 0 4 48 0 0 ’ - 4 .4 0’0 > > 4 8 0
0 0 0

44 > 8 4 4 8 4 5 4’. 44
P. 48 5 - 4 4 8 8 4 48 8 4 4
44 0. 0. 0. ’44 P41 -.4 .~~ 4 ’ 4 ‘5 45 0) 0 (4 4 4)
(4 0 8) 8) 0 4 8 - 4 4) * 4 4 8 5 . 4 1.1 1.
‘S, ~~~~4 U) ~~ 4 0 1 H P 4 4 4 -.4 ‘0 0 4 8 (4 .-I 1.10
5 0 4) 14

~~~ 

I~~0 14 5 . 4
0 4 8 . 4 0 A l A  v l v  48 0 4 , 1.1 84 -4 4 1. X X  Z -4
H 0 4  4 8 ) 4 4 8  4 O Q ,  4) (4 P-I 48
F. O 4 1 — --~~— - . -~~ 8) 0 4 8 - 4  0 0’ . I. 4’
‘4 0 -.4 48 4 8 - 4 4 4.1 )4 4 ( 4  0 1 1
5 4 8 0  -‘ - ‘ < 0 4) 4 ) 1 1 0  U~~~ 44 9 1.0
P4 4 8 0 ’ -  ~~~ — -- - 0  ‘0’0 4 1  1 0 . 4 8  4) 01
4. 0 . 4 . 4 - i0.~~~. l l. ~ -J 0. IJ ‘.14

>4 H P4 ‘-4 LI) LI 44
0 4 0 0  z 8 ) 0 4 ~~~~~~~ Li) Q

~~~~
S I

0’ ‘-4 48 I 01 U)
41 I

H • 4 -4
4. 5 8) 4 -

U) (44 1 4 1 4 4 8 ’ 8) 0
‘.1 0 4) 5 48’ 04 —

—
14 5

44 - 4 4) 4 1 1 0 1., 0. 4
5 4 4 4 0 4 * 4) 4’) 5 5

8) 5 4 8 w 4 5 4 I
.4 14

Z 0 0 0’ 0 ’ . 4 - 40 0 . ‘44 (4 0 F. 4’. ~4 .4
~ 4 N I I I I(I ~~~

~~~
• .~~ F. z

1 4 0 5 5 0 4) 0
P4 . . 1• 0 0 0 5 1 00 ’ 8 ) 8) ea .4 8) 4~~~~~ . .4

4 4..4.-4 .4 . . 4 4 ’ S. 4 4. ~~~.4 ’ 0  0.
~ U 8 ) 4 4 l 4 $ l~~~~~~~~~~1 1 W~~~ ~~~0 I4  ~ 4 9 .48

‘4 ~~~0 ) > > > >~~~~~~~~

.4 5 (4

—2 1—

i



APPENDIX 3

FAULT ACTION
NUMBER MEANIN G CODE

0 No fault 0
1 Left endpoint — no fault Right endpoint - overflow 4
2 no fault infinity 3
3 no fault underflow 0
4 overflow no fault
5 overflow overflow 4*
6 overflow infinity 3
7 overflow undarf low 4*
8 infinity no fault 3
9 infinity overflow 3

10 infinity infinity 3
11 infinity underflow 3
12 under f low no f ault 0
13 underflow overflow 4*
14 underf low infinity 3
15 underfiow und rfl.ow 0
16 Division by zero 3
17 Zero raised to th. zero power 1
18 Square root of a negative number 3
19 Logarithm of a nonpo.itive number 3
20 Underf low during computation of a SPA result 0
21 Overflow during computation of a SPA result 3
22 Intersection of disjoint interval. 3
23 Arc cosine or arc sine arq~ment out of rang. 3
24 Inv.rt•d interval 4
25 Illegal input character 4
26 Illegal input format specification 4
27 Illegal output format specification 1
28 Input string too long 4
29 Illegal or unspecified input unit 4
30 E,~d of file on input unit 1
31 Illegal or unspecified output unit 1
32 Conversion array overflow during baa. conversion 4t
33 Unrecogni zed error 4

* Denotes that the fault i. logically impossible
1’ This action should not be changed , since any othsr action could result

in a recursive call on INTRAP from INTCXH.

In the event that a fault occur., th. corresponding action code governs .
the response of the INTRAP routin.. The action codes , and their responses .
are s

0 Raturn to th. calling program without t.king any action
1 Print error massage nd return to th. calling program
2 Print error massage , trace call s.qu.nue, and return
3 Print erro r massaqe, trace call. sequence, step erro r

counter in Executive program, mad return
4 Print error massage, trace call sequence , and halt

computation

—22—



SECURITY CLASSIF ICATION or THIS PAGE (00),.,. Dale Snt.,.d) 
___________________________________

‘T Il’PPb.I ~~ A f ~~~ 
READ INSTRUCTIONSREPORT DOCUMENTA i n.n~ r~~ uu~ BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION 840. 3. RE CiPIENT’ S C A T A L O G  NUM BER

- 1731 )
4. T ITLE  (~~ d Subs.1l.) 7’~ 

. ‘ 5. TV P~~ QE. a&&QRL~4.,.2~ERIOD COV E REO

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

...
~~~~~ ‘ ~ ‘

~ ~ummary_~ep~~t~~, no spectflc
SOFTWARE FOR JNTERVAL ~~RITH ME TIC:/ ‘

~~~~~

‘ “ — rep~~t1iI~j~pei’iod
A REASONABLY PORTABLE PACKAGE~ (~

6. PERFORMING ORG. REPORT NUMBER ’

7. A UT NOR(.) S. CONTRACT OR GRAN T P4UMSER(.)p
J . M ~~~~~~e

0 PERP3NNSNG ORGANIZATION NAM E AND ADDRESS 00. PROGRAM ELEMENT. P R O J E C T . T A SK

Mathematics Research Center , University of
610 Walnut Street Wisconsin 8 (Computer Science)
Madison, Wisconsin 53706 ___________________________
I I . CON T R OLLNI G OFF4CE NAME AND ADDRESS 12.. REPORT DATE

U. S. Army Research Office Mar.=~~~77
P.O . Box 12211 ‘3- NUMBEROF PA~~t~

Researc~h Triangle Par)ç., North carolina 27709 22
¶4. MONITORING AGENC Y NAME S ADDRESS(il di#f.rwt hoe. Controllln4 Off ice) IS. SECURITY CLASS. (of U.l. report)

~2 5~~ / UNCLASSIFIED
/ , J is. .

SCH E DU L E

15 DI ST RISUTION STATEMENT (of tf , l . Report)

Approved for public release; distribution unlimited .

Il DiSTRIB UTION S T A T EMENT (of S. .b.ftecS .nf.r.d ffi Block 20, il diUer.nt hoc, R.port)

IS SUPPLEME N A RY NOTES

IS. KE Y WORDS (ConIffiu. 04 ,.ve,e. .84. If fl .c.. . 7 04d Sd.ntSt~ by block n,m,b.r)

Interval Arithmetic Program Package

Portable Software

20 ABSTRACT (C.,,1M04 e., oev r• .14. II n.e... y ~~d Idsntlfr by block nt ,b.r)

We discuss the design and capabilities of a package of FORTRAN subroutines
for performing interval arithmetic calculations. Apart from a relatively small
number of primitives and constants , the package Is di rec t ly t r ans fe r rable to
most large scale computers , and has been successf ully implemented on IBM , CDC ,
and Honeywell equipment in addition to the UNIVAC 1110.

This package has been designed so as to be compatible wi th the AUGMENT pre—
compiler , and includes interval analogs of appropriate standard FORTRA N opera-
tions and functions , as well as operations and functions peculiar to interval
arithmetic. The result is that the user who has access to AUGMENT may write
prog r ams using interval ari thmetic just as though FORTRAN recognized INTERVAL as
a standard datp tvn~~~

DO
~~~~~~~ ~473 EDITION OP I NOV SI 55 OBSOLETE UNCLASSIFIED

SECURITY CLASSI FICATiON OF T NS$ PAGE (~~~sn 5.0. t.rt .r d>

1.- - /  -


